Process Framework Design Review
Shankar Rachakonda

vrachako@eos.hitc.com

17 April 1996

SR1-1

Process Framework (PF)
Overview

* Driving Requirements

* PF Software Design

* PF Context

» OO Design Models

» Design Drilldown

706-CD-003-001 Day 3 Book B SR1-2

PF Driving Requirements

» General Functional Description

- an extensible mechanism for ECS developed client and server applications to
transparently include ECS infrastructure features

« Key Requirements

- Encapsulate implementation details of ECS infrastructure services and
remove the need for programmers to rewrite common initialization code

- Ensure design and implementation consistency for all ECS Client and Server
Applications

 New Release B Features
- New functionality for SDPS and CSMS in Release B
- Under study for FOS
- Retrofitted into Release A development

* Evolutionary Features

- Provides a basis by which future extensions to infrastructure mechanisms
can be incorporated without adversely affecting the ECS developers

For more details please refer to 305-CD-028-002, Section 4.5.1

706-CD-003-001 Day 3 Book B SR1-3

PF Software Design

Three step approach

Step 1. Identify all the common capabilities needed in ECS client/server
applications

Step 2. Classify ECS processes from a client/server perspective

Step 3. Allocate required capabilities at different levels of abstraction for
each process type

706-CD-003-001 Day 3 Book B SR1-4

Common Capabilities Required
by ECS Processes

« Ability to initialize the process application and infrastructure in a
consistent way and provide some basic process information

» Interface to Mode Management and Error-Event Handling
o Support for Life Cycle Services

 Interface to Asynchronous Message Passing, Server Request
Framework and to common facilities such as batch FTP

* Encapsulation of OODCE Naming/Directory and Security
parameters setup

706-CD-003-001 Day 3 Book B SR1-5

PF Software Design

ECS Process Classification

Process

A

Client Server

A A

Gateway Client ECS Client Unmanaged Server Managed Server

Document Reference:
305-CD-028-002,
Fig.4.5.1.1-1

706-CD-003-001 Day 3 Book B SR1-6

Operating Context of ECS
Processes
\

(o

MSS Agent

-

Management

MSS

Log

Application
Log

C
ECS Client
/ Process
Managed
Server K

Process 1

Unmanaged
Server
Process 1.1

Unmanaged
Server
Process 1.2

S~

o

ECS Host

|~<m§m~+mc.') |

y

_

External Workstation

/

706-CD-003-001 Day 3 Book B

Document Reference:305-CD-028-002,Fig. 4.5.1.2-1

SR1-7

PF Software Design
Simplified Object Model

EcPiGenProcess coTs
/I Attributes defining theServer Gso
I/ basic process information o—Pp

// and Mode Mgmt. param.s

/I Access methods for
/I process variables
PfGetMode()

PfProcessEvent()=0
PfGetConfigFileName()

N

|
| EcPfGenServer
EcPfClient

EcPfConfigFile provides

/lAttributes for naming preferences
/I and other OODCE param.s
/lhere

PfProcessEvent()

PfGenServerStart() SRF
PfShutdown()=0
PfSuspend(
PfResumeé)
tr()

PfGetSRF
PfRegisterObject()
PfUnRegisterObject()
//Public methods for Async. MP, < AsyncMsg
/Ibatch FTP, etc.

MyClientProc |

EcPfManagedServer

myMSSMgrPtr : EcCAgManager

EcPfUnmanagedServer PfRegisterMetric() MSS Management
E:ﬁ]ﬁ?(n)() P Framework

] PfShutdown()
PfExecShutdown()
PfSetShutdownSec()
PfShutdownMyself()
PfGetShutdownSec()

PfProcessEvent()

MyUnmanagedServerProc

r

is created by MyManagedServerProc

706-CD-003-001 Day 3 Book B

SR1-8

Class Descriptions

This class represents a generic process. It has all the
common functionalities for all the processes. Itis
mainly a container of attributes needed by every
process. It obtains attribute values from the
configuration file or command line parameters.

EcPfGenProcess

This class provides basic framework for server
processes. It encapsulates DCEServer capabilities to
provide OODCE naming/directory set up, and
performs initialization of other services such as FTP,
Message Passing, Security.

EcPfGenServer

This class provides a basic framework for managed
server processes. All ECS server applications are
managed server processes. This class provides

an interface with MSS subagent, and through which,
ECS application can communicate with MSS. This
class also provides interface with Event Handling, which
allows consistent Error-Event logging for all ECS server
application.

EcPfManagedServer

706-CD-003-001 Day 3 Book B SR1-9

Class Descriptions

EcPfUnManagedServer

This class is a framework class for unmanaged server

processes. Unmanaged server processes has all
the functionalities of a managed server processes,
except it is not under management of MSS.

EcPfClient

Defines the framework for client processes.

MyManagedServerProc

This class is implemented by programmers to inherit
managed server process functionalities. This class
inherits from EcPfManagedServer, and is application
specific. Application programmers are required to

provide implementation of application shutdown
method of this class.

MyUnManagedServerProc

This class is implemented by programmers to inherit
unmanaged server process functionality.

MyClientProc

This class is implemented by programmers to inherit
client process functionality

706-CD-003-001 Day 3 Book B

SR1-10

Configuration File for PF

« Server process options are indicated in an orderly (parsable) fashion
in a configuration file - like the .Xdefaults in Motif

e This file can be different for each instantiation of a server executable

 Code should not be recompiled to run with different options (ex:
different modes)

» Several options have been identified

» Other options as identified by subsystems will be incorporated

706-CD-003-001 Day 3 Book B SR1-11

Configuration file Syntax/
Options

[PF]

FtpThreads =5 // simultaneous ftp threads to do batch processing
ServerName = “myname” // name of the server - one name per server
GroupName = “groupname” // group name

ProfileName = “profilename” // profile name

Protocol = “tcp” /[underlying transport protocol
Site="" Il site

Async =“True” /[need asynchronous messaging ?
AsyncPstFile = “filename” //async message persistence filename
KeyFile = “keyfilename” /] server identity (security) keytab file
HostPolicy = “one” /[one server per host

Application specific information can also be included

A template of the configuration file will be provided in a central place
so application programmer can start with it (copy and provide values)

706-CD-003-001 Day 3 Book B SR1-12

Configuration File Syntax Options

Precedence for setting options
(Listed below in the order of precedence)

1. Access functions provided by the framework

2. Command line arguments

3. Configuration File entries

706-CD-003-001 Day 3 Book B SR1-13

Object Model

The following object model will be reviewed:

Model Name Document Reference Section
PF Object Model 305-CD-028-002 45.1.3

706-CD-003-001 Day 3 Book B SR1-14

Dynamic Model

The following event traces will be reviewed:

Event Trace Name Document Reference
Application Start Up 305-CD-028-002
Application Shutdown 305-CD-028-002

Event Logging 305-CD-028-002

706-CD-003-001 Day 3 Book B

Section

45.1.5.1
45.1.5.2
4.5.1.5.4

SR1-15

Event Traces

Application Start Up
Scenario

This scenario describes the start up of a generic server application.

Functional Description

MSS sub-agent fires the script for starting the ECS server application.

Server application main instantiates a MyManagedServerProc object, and reads
from a configuration file and command line arguments to set attributes needed
for the process execution.

Application main calls MyManagedServerProc->PfiInit() to perform all DCE related
initialization (and optionally SRF, message passing, and FTP initialization) for the
process. EcCAgManager object is created at this time.

Application performs normal server setup such as creating server manager
objects, registering objects with GSO, and registering metrics with MSS.

Application main calls MyManagedServerProc->PfStart() to start MSS monitoring,
and listen to client requests.

Assumptions/ Preconditions

The application is available on an ECS host.

706-CD-003-001 Day 3 Book B SR1-16

Startup Scenario

MSS Applicgtion MyMngd EcPfMngd EcAg Service I/E GSO Ec_Pf_
SubAgent m[m ServerProc Server Manager ConfigFile
run a server .
_ctor gl ctor
Read the configuration file -
Parse the command line argliments

Application
Specific

constructor

Pilnit() -

Initialize DCE related functionglities -
Initialize -
- -

start()

p—

PfRegisterObject
- L
PfRegisterMdtric
o >'
FTP, MP, or SRF set up

PfStart(i

StartMonitgiEing

theServer>Listen() -

Normal processing occurs here

706-CD-003-001 Day 3 Book B SR1-17

Event Traces

Application Shutdown

Scenario
« Shutdown of a generic server application at the request of MSS

Functional Description

« MSS sub-agent, ECAgManager, calls PfGetShutdownSec() to obtain the number
of seconds the application needs to perform shutdown.

» After the shutdown seconds is obtained, the MSS sub-agent then calls
PfExecShutdown() to shutdown the server process.

o PfExecShutdown() will first call theServer->Shutdown() to stop accepting client
requests, and return from listen.

 The application specific shutdown method (PfShutdown()) is called to perform
application specific shutdown. If the application does not shutdown within the
indicated time frame, the operator will be given an opportunity to kill the
application or let it continue to operate.

Assumptions/ Preconditions
 The application process is running.

706-CD-003-001 Day 3 Book B SR1-18

Application Shutdown

MSS Application MyMngd EcPfMngd EcAg

. GSO
SubAgent main ServerProc Server Manager

[Normal processing occurs here

—t

Shutdown requeqd

-
PfGetShutdownSec()

PfExecShutdown(level)
-
() theServer->Shuidown()

-t Return froin Listen

PiShutdown(level)
-

Control return to majn

Destructor

Destructor
P Destructor

706-CD-003-001 Day 3 Book B

SR1-19

Event Traces

Event Logging

Scenario
 For logging errors/events

Functional Description

* On detecting an event the application creates an instance of the ECAgEvent
class and uses it to describe the event.

|t then passes the event object, along with the log type, to the ECAgManager to
be logged using the method ProcessEvent.

Assumptions/ Preconditions
* Logging has been initialized

706-CD-003-001 Day 3 Book B SR1-20

Event Logging

Management MSS EcAg EcPfMngd MyMngd EcAg
Log SubAgent Manager Server ServerProc Event
theEvent = hew EcAgEvent
Event
detected
fill w/ event info
—>
PfProcessEvent(theEvent
L
ProcessEvent(theEvent)
-
passes
stores -
S

706-CD-003-001 Day 3 Book

B

SR1-21

ECS Process Framework

Development Recipe

Step 1. Develop a configuration file

Step 2: Develop Distributed Objects

Step 3: Develop the appropriate derived class

Step 4. Develop the Application Main

706-CD-003-001 Day 3 Book B SR1-22

Managed Server Process

Development Example

GSO

A

Server Framework

A

MyManagedServerProc

DCEODbj

DCElnterfaceMgr

24

Widget_ 1 0_ABS

A

Widget 1 0 Mgr

uses

MyServerMain is a
module containing the
main program for a
managed server
application

706-CD-003-001 Day 3 Book B

MyServerMain

widget()

SR1-23

MyManagedServerProc Class
Definition

Cl ass MyManagedSer ver Proc: public EcPf ManagedServer

{

706-CD-003-001 Day 3 Book B

[l My Attributes

/'l Constructor, Destructor, operations

Start(...); /'l One devel opnent option
/[l Overriding nethods
Pf Shut down(...); /1 Mandat ory

Pf Get Shut downSec(...); // Special Case

SR1-24

Class MyManagedServerProc
Development

Constructor

MyManagedSer ver Proc: : MyManagedSer ver Proc(int *argc, char **argv)
EcPf ManagedSer ver (argc, argv)
{

/'l Application related progranm ng
/'l Process application-specific command |ine argunents

/1 OQther setup functions

/'l Get process data

Per hapsl needThi s = Pf Get Mode() ;

Per hapsl needAl soThis = PfGet Profil eNane();

))'Set nmy preferred protocol
Pf Set Pr ot ocol Pol i cy(protocol);

706-CD-003-001 Day 3 Book B SR1-25

Main Program for PF

/|l extern ecsserver
MyManagedSer ver Pr oc* ecsServer;

int main (int argc, char** argv)

/llnstantiates the MyManagedServerProc, this will in turn execute //
constructors of EcPfManagedServer, EcPfGenServer and EcPf GenProcess. //
Command |ine argunents are being passed, which will be used later by //
EcPf GenServer and EcPf GenProcess to obtain class attribute val ues.

ecsServer = new MyManagedServerProc (argc, argv, &st);
/'l check return status here
/1 Call Pflnit to perform initialization.

Pflnit ();
Start ();
}

706-CD-003-001 Day 3 Book B SR1-26

Start Up Drill Down

Construct EcPfManagedServerObject

/I This constructor will execute the constructor of EcPfGenServer,
[/ which in turn will the execute constructor of EcPfGenProcess.

EcPf ManagedSer ver : : ECPf ManagedServer (i nt argc, char** argy,
EcU St atus st)

. EcPf GenSer ver (argc, argv, st)

/1l Initialize the pointer to the EcAgManager object

/'l Check return status of EcPfGenServer Constructor

/'l Any application specific set up, such as parsing application specific
/1 command |ine argunents, calling Get/Set nethods, and ot her set up

/'l process can be done here.

706-CD-003-001 Day 3 Book B SR1-27

Start Up Drill Down

Read the config file and parse the command line arg
/1 This constructor calls the constructor for the base class DCEServer, so
/1l that the gl obal object pointer theServer gets set to point to the Process
/'l Framework Server Qbject (ecsServer) when it is constructed.

EcPf GenServer: : EcPf GenServer (i nt argc, char** argv, EcUt Status st)
EcPf GenProcess(argc, argv,st), DCEServer ()

/1l Initialize class attri butes

/'l Private function PfSetAttrFronConfigFile() is called to read class //

attribute values fromConfiguration File. Nanme of the Configuration File //
I's provided fromthe command |ine argunents.

status = PfSet AttrFronConfigFile();

/1l Call PfSetAttrFromArgv(argc, argv) function to parse the command line //
argunents and overwite, or set class attributes.

status = PfSet AttrFromArgv(argc, argv);

706-CD-003-001 Day 3 Book B SR1-28

Start Up Drill Down

PflInit()
[l Pflnit is called by application main(), to initialize the managed server
/] process. In this nethod, the initialization nethod of EcPfGenServer

/[l (PfGenServerlnit()) is invoked. The EcAgManager object is instantiated,
/1l and registered with GSO
EcUt St at us EcPf ManagedServer: :Pflnit()

{

/1 call Pf GenServerlnit(). It wll do any conbination of the foll ow ng:
/'l - DCE related initialization;

/1 - Initializes Message Passing and SRF

/'l - Initializes FTP process

status = Pf GenServerlnit();
/'l Obtain execution nane, application ID, and programID from Get nethods
/'l of EcPfGenProcess class. These values will be used to construct
/| EcAgManager object |ater
execution_nanme = Pf Get ExecNane();
App! D = Pf Get Appl () ;
Progl D = PfGet Program) ;
/1l Instantiates EcAgManager object. EcAgManager is an distributed object.
/'l ECS application uses the server side of EcAgManager to conmunicate with
/'l the MSS subagent.
nyMsSSMyr Pt r = new EcAgManager (executi on_nane, obj Uui d, Appl D, ProglD):

706-CD-003-001 Day 3 Book B SR1-29

Start Up Drill Down

Start()

/1 This nmethod will be provided by the application. This nethod

/1 will contain whatever needs to set up the server application process.
EcUt St at us MyManagedServer Proc: : Start ()

{

/'l Create server nmanager objects
sl eeper _1 0 Myr Sl eeper OQbj (obj Uui d) ;
/[l If security is used, check and create ACLs and ACL dat abases

DCEAcl Schema *t heSchema = EcXSeSecurity->Creat eAcl Schema(st atus, 8)
status = PfRegi sterQbject(SleeperCbj, true); //Register objects with GSO

status = PfRegisterMetric(MntLevel,MetricCObjPtr);//Register Metric with MS
/'l If needed, create FTP and Message Passing processes here

/lFinally, tell MSS to start nonitoring this process and start |istening
status = PfStart(); // This nust be the last instruction
return status;

}

706-CD-003-001 Day 3 Book B SR1-30

Shutdown Drill Down

PfShutdown(level)

EcUt St at us EcPf ManagedSer ver : : Pf Shut down(EcTAgMgnt Level Shut downlLevel ,

| nt Shut downReason,
Int graceful flag)

/1 This nmethod will be called by PF upon receiving the shutdown request

/1 This method will do whatever needs to be done to shutdown the
/'l application gracefully, such as notify client, |og off databases,etc.
/'l PF will take care of DCE cl eanup.

/1 If the application does not shutdown within the indicated tine frane,

[/ (indicated from PfGet Shut downSec()), the operator will be given an
[l opportunity to kill the application or let it continue to operate.

706-CD-003-001 Day 3 Book B SR1-31

Shutdown Drill Down

PfGetShutdownSec()

/1 This method needs to be overridden by the application to

/'l provide an estimation of shutdown tine the application needs.

/1 1f this inplementation is not provided, a default nunber of second
/1 will be provided by the process franework.

I nt MyManagedSer ver Proc: : Pf Get Shut downSec(EcTAgMynt Level | evel)
{

I nt nunCf Secs;
/1 Cal cul ate esti mat ed shut down second
nunf Secs = MyCal cul at eShut down() ;

return (nuntf Secs) ;

706-CD-003-001 Day 3 Book B SR1-32

Shutdown Drill Down

PfExecShutdown(level)

/1 This nmethod is called by the MSS sub-agent requesting a shutdown
/'l be performed. This nethod in turn calls theServer->Shutdown() to

/'l shutdown the server process.

EcU St at us EcPf ManagedSer ver : : Pf ExecShut down(EcTAgMgnt Level | evel
int graceful Fl ag)

{

Shut down() :
/'l theServer->Shutdown(), at this point, server wll
/'l return fromlisten, PfShutdown() will be called
/'l to performapplication specific shutdown.
}

706-CD-003-001 Day 3 Book B SR1-33

Event Logging Code

Wdget 1 0 Myr::Wdget ()

{
)).At this point | decide to | og an event (option 1)
t heEvent = new EcAgEvent (pl, p2, p3, p4),
ecsServer->Pf ProcessEvent (theEvent);
/'l New i nplenentation (Option 2)
t heEvent = new EcLgErrorMsg(error, class, severity);
ecsServer->Pf ProcessError Msg(theEvent);

}

706-CD-003-001 Day 3 Book B SR1-34

Server Application (Code)
Other examples

Getting Values

[l At this
nyVari abl e

ﬁyVariabIe
ﬁyVariabIe

ﬁyVariable

706-CD-003-001 Day 3 Book B

point | need sone val ues
= Pf Get Mode();

= PfGetPID();

= Pf Get Appl D() ;
= Pf Get Mpj or Ver si on() ;

SR1-35

PF Design Issues

1. Configuration File
Work-off plan
- Revisit configuration file options
- Coordinate with Rel A development
- Target date for completion 06/01/96

2. SRF Client Integration
Work-off plan

- Better understand the needs of SRF client

- Specialize a new lightweight server class from the Generic
Server Class

- Target date for completion 06/01/96

706-CD-003-001 Day 3 Book B SR1-36

